News

Oct 31st, 2017
The results are now available.

Oct 30th, 2017
The solutions are now available.

Sept 8th, 2017
Update for Challenge 15 available, but will not count in evaluation.

Sept 4th, 2017
Updated mailling list and submission information.

Aug 23rd, 2017
The preliminary results have been sent out to participants, and are now available.

July 09th, 2017
We fixed the intensities in the TSV archive for challenges 046-243.

June 22nd, 2017
We added the Category 4 on a subset of the data files.

May 22nd, 2017
We have improved challenges 29, 42, 71, 89, 105, 106 and 144.

April 26th, 2017
The rules and challenges of CASMI 2017 are public now !

Jan 20th, 2017
Organisation of CASMI 2017 is underway, stay tuned!


Results in Category 4

Summary of participant performance

F1 score Mean rank Median rank Top Top3 Top10 Misses TopPos TopNeg Mean RRP Median RRP N
kai_iso 2306 658.28 5.0 66 91 119 0 46 20 0.913 0.999 198
kai112 2117 498.20 6.0 55 85 116 0 38 17 0.939 0.999 198
IOKRtransferAvgScore 1402 2740.56 201.0 36 59 73 0 20 16 0.681 0.955 198
IOKR_TanimotoGaussian 1212 3691.67 393.0 33 50 61 0 21 12 0.613 0.844 198
IOKRtransfer 1172 3733.52 396.0 31 48 60 0 19 12 0.609 0.832 198
yuanyuesimple 718 192.59 31.5 10 23 58 0 5 5 0.973 0.990 198
yuanyuesqrt 681 160.84 33.5 10 24 53 0 7 3 0.974 0.990 198
metfrag_plus 634 1750.18 142.0 6 21 51 0 2 4 0.811 0.966 198
metfrag 523 749.61 93.2 7 15 42 0 4 3 0.914 0.980 198
yuanyuelogsum 305 1248.99 253.2 5 12 22 0 4 1 0.833 0.956 198
Rakesh 301 607.01 135.5 0 2 19 2 0 0 0.904 0.962 198
This summary is also available as CSV download.

Table legend:

F1 score
The Formula 1 score awards points similar to the scheme in F1 racing for each challenge based on the rank of the correct solution. In the participant table, these are summed over all challenges. Please note that the F1 score is thus not neccessarily comparable across categories.
Mean/Median rank
Mean and median rank of the correct solution. For tied ranks with other candidates, the average rank of the ties is used.
Top, Top3, Top10
Number of challenges where the correct solution is ranked first, among the Top 3 and Top 10
Misses
Number of challenges where the correct solution is missing.
TopPos, TopNeg
Top1 ranked solutions in positive or negative ionization mode.
Mean/Median RRP
The relative ranking position, which is also incorporating the length of candidate list.
N
Number of submissions that have passed the evaluation scripts.

Summary of Rank by Challenge

For each challenge, the lowest rank among participants is highlighted in bold. If the submission did not contain the correct candidate this is denoted as "-". If someone did not participate in a challenge, the table cell is empty. The tables are sortable if you click into the column header.

Category4:

IOKR_TanimotoGaussian IOKRtransfer IOKRtransferAvgScore kai_iso kai112 metfrag_plus metfrag Rakesh yuanyuelogsum yuanyuesimple yuanyuesqrt
challenge-046 1620.0 1616.0 1633.0 950.0 1231.0 333.0 347.0 816.0 907.0 6.0 4.0
challenge-047 387.0 393.0 383.0 10.0 7.0 130.5 187.5 10.0 322.0 8.0 12.0
challenge-048 6626.0 6615.0 544.0 1316.0 3448.0 1325.5 1370.0 736.5 155.0 135.0 97.0
challenge-049 1769.5 1730.5 520.5 642.5 317.5 1662.5 2426.0 760.0 851.0 344.0 681.0
challenge-050 2.0 2.0 2.0 2.0 3.0 15.0 6.0 77.5 32.0 12.0 10.0
challenge-051 2.0 6.0 1.0 23.0 37.0 17.5 17.5 5.5 96.0 5.0 6.0
challenge-052 279.0 287.0 1304.0 99.0 25.0 228.0 521.5 674.0 2382.0 326.0 311.0
challenge-053 1.0 1.0 2.0 1659.5 1.0 15.5 5.5 8.0 38.0 10.0 8.0
challenge-054 8690.0 8258.0 11290.0 480.0 510.0 9.0 6.0 18.5 1896.0 36.0 53.0
challenge-055 4.0 3.0 1.0 1.0 136.0 165.0 78.0 4.5 66.0 8.0 8.0
challenge-056 1.0 1.0 1.0 1.0 1.0 608.0 224.0 1118.5 186.0 247.0 215.0
challenge-057 15798.0 15807.0 15756.0 10074.0 403.0 7.0 6.0 12.0 8153.0 3318.0 117.0
challenge-058 14.0 19.0 637.0 100.0 119.0 373.0 572.0 1712.0 709.0 143.0 114.0
challenge-059 1.0 1.0 1.0 1.0 1.0 7.5 6.5 62.5 1.5 1.5 1.5
challenge-060 11130.0 11388.0 8759.0 989.0 6749.0 1349.5 1323.5 2250.0 2786.0 510.0 391.0
challenge-061 1053.0 1216.0 3166.0 65.0 32.0 7.5 192.0 298.5 1104.0 79.0 112.0
challenge-062 1.0 1.0 1.0 1.0 1.0 137.0 223.0 1078.5 86.0 191.0 192.0
challenge-063 1.0 1.0 1.0 1.0 1.0 8302.5 9232.5 136.5 388.0 113.0 137.0
challenge-064 11184.0 11212.0 11237.0 5.0 10.0 6892.5 9354.5 39.5 11063.5 1.0 1.0
challenge-065 2032.0 2055.0 1897.0 32.0 37.0 5.0 9.0 13.0 252.0 15.0 14.0
challenge-066 11104.0 11332.0 11332.0 6553.5 34.0 2.0 29.0 648.5 89.0 28.0 33.0
challenge-067 2669.0 2742.0 1168.0 213.0 114.0 1077.0 1045.0 760.0 2831.0 1193.0 1163.0
challenge-068 9.5 8.5 8.5 6.5 90.5 1.5 17.5 29.5 2.0 4.0 3.0
challenge-069 12.0 12.0 307.0 56.0 133.0 61.0 38.0 41.0 39.0 11.0 12.0
challenge-070 10720.0 10879.0 11445.0 2841.0 5937.0 12036.0 7087.5 629.0 5955.0 3088.0 2793.0
challenge-071 8802.0 8424.0 34.0 4.0 7.0 12.0 39.0 41.5 619.0 25.0 28.0
challenge-072 15495.0 15365.0 15585.0 529.0 749.0 33.0 35.5 40.5 329.0 25.0 21.0
challenge-073 1.0 1.0 1.0 1.0 1.0 4.0 15.0 11.5 1146.0 25.0 32.0
challenge-074 4.0 4.0 3.0 4.0 5.0 67.0 164.0 15.0 2.0 11.5 13.0
challenge-075 513.0 582.0 1.0 99.0 202.0 1786.0 1786.0 1245.0 35.0 47.0 64.0
challenge-076 15778.0 15739.0 15942.0 9417.0 192.0 74.0 1236.0 24.5 3960.0 3.0 2.0
challenge-077 7149.0 7223.0 7151.0 1608.0 5616.0 209.5 208.0 820.0 883.0 366.0 121.0
challenge-078 12822.0 12908.0 5070.0 575.0 7599.0 506.5 548.5 877.5 2210.0 213.0 182.0
challenge-079 674.0 623.0 593.0 1043.5 3.0 10.0 10.0 70.0 3.0 4.0 3.0
challenge-080 1.0 1.0 6635.0 1.0 1.0 141.0 56.0 88.0 287.0 167.0 118.0
challenge-081 1.0 1.0 1.0 2.0 1.0 14.0 15.0 3.0 40.0 25.0 10.0
challenge-082 39.0 36.0 14.0 19.0 18.0 2113.5 237.5 104.0 36.0 7.0 10.0
challenge-083 467.5 521.5 1.5 2.5 2.5 13.0 52.5 96.0 9.0 2.0 2.0
challenge-084 388.0 394.0 302.0 1012.0 4376.0 230.5 167.5 158.0 184.0 76.0 136.0
challenge-085 9221.0 9219.0 9090.0 89.0 73.0 4.0 2.0 41.5 1.0 13.0 7.0
challenge-086 25067.0 25831.0 196.0 556.0 233.0 51.0 131.0 926.0 64.0 50.0 61.0
challenge-087 1.0 1.0 1.0 2.0 26.0 5929.0 8341.0 967.0 2070.0 4.0 4.0
challenge-088 3498.5 3500.5 3524.5 35.5 113.5 563.0 563.0 77.5 3281.0 1.5 1.5
challenge-089 4519.0 4549.0 4220.0 1.0 1.0 83.0 10.0 18.0 120.0 20.0 24.0
challenge-090 240.0 249.0 198.0 71.0 676.0 178.5 75.5 68.5 20.0 25.0 30.0
challenge-091 686.0 677.0 699.0 1.0 22.0 449.5 449.5 31.5 33.0 3.0 3.0
challenge-092 345.0 327.0 25.0 5.0 1.0 5.0 7.0 35.0 252.5 10.0 5.0
challenge-093 3729.0 3735.0 3727.0 1.0 1.0 13.0 43.0 38.5 265.0 197.0 116.0
challenge-094 11794.0 12764.0 6.0 21.0 21.0 317.0 1605.0 238.0 7063.0 25.0 29.0
challenge-095 9459.0 9427.0 9209.0 1146.0 28.0 3.5 11.5 288.5 172.0 383.0 365.0
challenge-096 212.0 104.0 5179.0 866.0 13073.0 2180.0 2342.0 3015.0 309.0 701.0 616.0
challenge-097 1.0 1.0 1.0 1.0 1.0 2.0 3.0 35.5 283.0 19.0 32.0
challenge-098 3055.0 3066.0 3028.0 1.0 4.0 2271.0 1589.0 31.5 1577.0 117.0 148.0
challenge-099 10071.0 10075.0 10043.0 6480.0 206.0 9.0 21.0 35.0 7091.0 1.0 2.0
challenge-100 7160.0 7238.0 7587.0 1349.0 1936.0 653.0 869.0 1118.5 341.0 530.0 471.0
challenge-101 12846.0 12958.0 12441.0 8312.5 12.0 921.0 714.5 241.5 1791.0 1.0 1.0
challenge-102 90.0 46.0 4940.0 5.5 12.0 92.0 270.5 51.0 68.0 11.0 19.0
challenge-103 1.0 1.0 1.0 14.0 2.0 7.5 18.5 282.0 358.0 284.0 461.0
challenge-104 4345.0 4270.0 43.0 41.0 111.0 273.0 18.5 534.0 598.0 493.0 568.0
challenge-105 58.0 54.0 34.0 4.0 2.0 23.5 108.0 49.0 23.0 11.0 11.0
challenge-106 1816.0 1279.0 8302.0 8.0 8.0 2.5 3.5 12.5 13.0 1.0 1.0
challenge-107 5639.0 5629.0 5532.0 141.0 116.0 603.5 3142.5 62.0 4298.0 12.0 11.0
challenge-108 417.0 882.0 4.0 3.0 2.0 1.5 287.5 331.5 89.0 33.0 31.0
challenge-109 9252.0 9423.0 9287.0 89.0 120.0 24.0 26.0 249.5 1818.0 59.0 60.0
challenge-110 6181.0 6253.0 6647.0 471.0 979.0 145.5 428.0 3115.0 1970.0 53.0 38.0
challenge-111 3.0 3.0 2.0 1.0 32.0 192.0 567.5 360.0 106.0 125.0 148.0
challenge-112 7377.0 7275.0 894.0 1088.0 7219.0 52.0 39.0 101.5 513.0 93.0 161.0
challenge-113 398.0 398.0 378.0 5.0 5.0 14.0 19.0 15.5 9.5 14.0 9.0
challenge-114 9694.0 9699.0 7389.0 1.0 1.0 1.0 44.0 21.0 17.0 1.0 2.0
challenge-115 1.0 1.0 1.0 1.0 1.0 143.0 65.0 - 11.0 31.0 122.0
challenge-116 16.0 17.0 1.0 325.5 2.0 9.0 6.0 15.5 8.0 7.0 6.0
challenge-117 3759.0 3763.0 2671.0 5.0 4.0 1.0 1.0 38.5 54.0 168.0 153.0
challenge-118 7017.0 7005.0 6439.0 4370.5 63.0 37.0 1487.0 20.5 41.0 7.0 9.0
challenge-119 10479.0 10356.0 9665.0 1996.0 3148.0 9.0 1.0 479.0 2559.0 319.0 349.0
challenge-120 10106.0 9869.0 1.0 1.0 1.0 232.5 23.5 318.5 156.0 47.0 52.0
challenge-121 36.0 22.0 329.0 3.0 4.0 1.0 1.5 6.0 10.0 13.0 11.0
challenge-122 5577.0 5945.0 878.0 1.0 1.0 3248.0 3292.0 44.0 222.0 28.0 37.0
challenge-123 13335.0 13363.0 11629.0 2187.0 5892.0 6922.5 731.5 789.0 1357.0 226.0 257.0
challenge-124 1390.0 1397.0 1357.0 1.0 3.0 1.5 29.5 6.5 4.0 6.0 9.0
challenge-125 2559.5 2595.5 1915.5 14.5 7.5 55.5 76.5 47.0 60.5 36.0 17.0
challenge-126 6.0 4.0 28.0 5.0 122.0 1.0 1.0 21.0 3.0 6.0 21.0
challenge-127 272.0 157.0 551.0 6.0 14.0 4.0 5.0 7.5 2.0 2.0 2.0
challenge-128 3.0 3.0 7539.0 1.0 4.0 9.0 11.5 71.5 52.0 193.0 119.0
challenge-129 1843.0 1851.0 1.0 1.0 1.0 6.5 8.5 143.5 1493.0 6.0 24.0
challenge-130 86.0 85.0 71.0 5.0 9.0 20.0 58.0 8.5 31.0 14.0 15.0
challenge-131 386.0 386.0 357.0 5.0 8.0 14.5 18.5 10.0 87.0 10.0 12.0
challenge-132 2304.0 2310.0 1345.0 201.0 358.0 161.5 161.5 331.0 1294.0 90.0 65.0
challenge-133 8.0 7.0 4.0 1.0 1.0 11.5 5.5 10.0 26.0 12.0 13.0
challenge-134 12400.0 12321.0 1877.0 9.0 5.0 187.0 604.5 736.5 86.0 103.0 88.0
challenge-135 608.5 563.5 570.5 297.5 283.5 2749.0 629.0 760.0 1211.0 171.0 178.0
challenge-136 1.0 1.0 1.0 1.0 3.0 92.0 7.5 1712.0 89.0 98.0 105.0
challenge-137 1.5 1.5 6.5 1.5 1.5 26.0 24.5 29.5 116.0 18.0 26.0
challenge-138 2.0 3.0 33.0 8.0 104.0 7829.0 117.0 820.0 62.0 90.0 135.0
challenge-139 2.0 2.0 2.0 2.0 2.0 220.5 41.5 66.5 13.0 95.0 19.0
challenge-140 3139.0 3308.0 3.0 10454.0 36.0 466.0 2904.0 6137.5 2242.0 209.0 194.0
challenge-141 1.0 1.0 1.0 1.0 27.0 7629.0 54.0 534.0 8.0 60.0 69.0
challenge-142 3803.0 4111.0 413.0 1.0 1.0 1.0 552.0 21.0 3768.0 13.0 19.0
challenge-143 5.0 8.0 65.0 6.0 32.0 4196.0 2264.0 1902.0 298.0 409.0 356.0
challenge-144 2.0 3.0 31.0 18.0 17.0 762.0 248.5 605.5 1347.0 109.0 91.0
challenge-145 1.0 1.0 29.0 1.0 2.0 4197.0 249.0 747.5 82.0 138.0 140.0
challenge-146 11603.0 11883.0 12162.0 1.0 1.0 33.5 470.5 75.5 2665.0 5.0 5.0
challenge-147 783.0 969.0 1.0 1039.0 3176.0 994.0 126.0 5298.0 133.0 7.0 9.0
challenge-148 1.0 2.0 8.0 2.0 2.0 1.5 1016.5 6297.0 6906.0 27.0 17.0
challenge-149 1.0 1.0 1.0 2.0 2.0 5.0 1.0 5.5 2.0 3.0 5.0
challenge-150 851.0 1355.0 6.0 1.0 1.0 1090.5 5.5 8.0 283.0 8.0 8.0
challenge-151 9844.0 9982.0 10365.0 5997.5 2.0 5541.0 95.0 18.5 8568.0 168.0 129.0
challenge-152 60.0 58.0 63.0 3.0 2.0 3.0 2.0 4.5 1.0 1.0 1.0
challenge-153 31.0 34.0 28.0 32.0 28.0 4641.0 387.0 1118.5 51.0 219.0 267.0
challenge-154 8628.0 9312.0 10975.0 1.0 1.0 6749.0 40.0 13.0 36.0 12.0 17.0
challenge-155 3.0 3.0 2.0 1.0 1.0 577.0 242.0 62.5 1364.5 26.5 26.5
challenge-156 16.0 17.0 17.0 16.0 9.0 20.0 330.5 298.5 8231.0 23.5 101.5
challenge-157 45.0 39.0 24.0 23.0 36.0 12946.0 496.0 2250.0 179.0 443.0 469.0
challenge-158 6527.0 6751.0 3.0 4.0 3.0 16.5 958.5 298.5 36.5 4.0 8.0
challenge-159 57.0 61.0 1.0 1.0 1.0 94.0 82.0 1078.5 115.0 90.0 160.0
challenge-160 850.0 1317.0 12244.0 6866.0 1.0 6.0 12.0 39.5 3006.0 105.0 121.0
challenge-161 240.0 276.0 277.0 587.0 2924.0 13192.0 172.0 571.0 1069.0 906.0 889.0
challenge-162 17730.0 17762.0 1.0 1.0 1.0 4782.0 125.5 628.5 192.0 12.0 11.0
challenge-163 1.0 1.0 1.0 1.0 2.0 4.0 32.5 1050.5 310.0 4.0 3.0
challenge-164 1.0 1.0 3.0 1.0 1.0 8106.0 528.0 2250.0 560.0 727.0 672.0
challenge-165 1995.0 1998.0 1990.0 1256.5 1.0 1124.0 16.0 13.0 858.0 40.0 48.0
challenge-166 503.0 668.0 3720.0 1.0 2.0 1.5 35.5 648.5 2378.0 6.0 12.0
challenge-167 16017.0 15822.0 14779.0 2.0 1328.0 4075.0 1579.0 6519.5 284.0 145.0 67.0
challenge-168 1248.0 1505.0 9.0 2248.5 12.0 323.0 334.5 760.0 130.0 54.0 137.0
challenge-169 136.0 145.0 33.0 1.0 11.0 32.0 25.0 64.0 28.0 28.0 14.0
challenge-170 1.0 1.0 1.0 2.0 1.0 2476.0 92.0 1118.5 270.0 348.0 492.0
challenge-171 1.0 1.0 3.0 3.0 3.0 364.0 85.0 832.5 45.0 167.0 218.0
challenge-172 177.0 187.0 204.0 289.0 219.0 7428.5 2969.5 3839.5 277.0 277.0 251.0
challenge-173 14759.0 14943.0 1371.0 1.0 9.0 2774.0 112.0 629.0 2193.0 1365.0 1779.0
challenge-174 6758.0 6924.0 6538.0 7.0 8.0 14.0 956.0 41.5 5667.0 50.0 47.0
challenge-175 23.0 23.0 1353.0 17.0 15.0 4094.0 21.0 40.5 108.0 13.0 12.0
challenge-176 45.0 48.0 18.0 9.0 1.0 9393.0 204.0 2250.0 2505.0 323.0 290.0
challenge-177 25.0 26.0 2.0 1.0 1.0 13.0 3.0 11.5 260.0 1.0 1.0
challenge-178 2751.0 2871.0 15923.0 2072.0 8782.0 15327.0 6078.0 1487.5 1407.0 696.0 600.0
challenge-179 2401.0 2408.0 1833.0 1.0 1.0 3.0 42.5 75.5 1.0 1.0 1.0
challenge-180 154.0 159.0 279.0 4.0 5.0 37.5 4.5 15.0 93.0 20.0 8.0
challenge-181 16296.0 16347.0 2513.0 125.0 6.0 7998.5 1076.5 3015.0 128.0 138.0 112.0
challenge-182 16.0 16.0 18.0 21.0 55.0 9509.5 8580.5 877.5 21924.0 7408.0 4694.0
challenge-183 1.5 1.5 1.5 1.5 1.5 1.0 20.5 898.0 1498.0 2.0 1.0
challenge-184 1.0 1.0 1.0 1.0 2.0 696.5 5.5 70.0 526.0 8.0 86.0
challenge-185 11818.0 11808.0 4216.0 1.0 1.0 1291.0 7387.0 88.0 284.0 243.0 225.0
challenge-186 7.0 7.0 2.0 2.0 9.0 1823.0 170.5 924.5 453.0 149.0 183.0
challenge-187 196.0 192.0 150.0 1.0 1.0 268.0 30.0 3.0 195.0 22.0 29.0
challenge-188 1.0 1.0 2.0 1.0 1.0 12690.5 2890.5 104.0 11135.0 26.0 24.0
challenge-189 41.0 44.0 1481.0 1.0 3.0 5160.0 847.0 41.5 3387.0 6.0 6.0
challenge-190 3375.0 3385.0 2465.0 74.0 295.0 4082.0 452.0 832.5 663.0 378.0 360.0
challenge-191 1692.0 1595.0 832.0 323.0 730.0 67.0 252.0 1124.0 217.0 62.0 85.0
challenge-192 6083.0 6371.0 120.0 1.0 2.0 22.0 34.0 926.0 41.0 55.0 29.0
challenge-193 2.0 2.0 1.0 4.0 5.0 725.5 658.5 967.0 404.0 5.0 5.0
challenge-194 7425.0 7635.0 252.0 1.0 1.0 5.0 1.0 974.5 1106.0 520.0 730.0
challenge-195 2.5 3.5 2.5 1.5 1.5 304.5 413.5 77.5 1449.5 1.5 1.5
challenge-196 1.0 1.0 2881.0 1.0 2.0 1774.0 1084.0 205.5 70.0 50.0 34.0
challenge-197 35.0 36.0 34.0 36.0 37.0 689.0 168.0 31.5 29.0 5.0 5.0
challenge-198 1.0 1.0 1.0 1.0 4.0 4950.0 326.5 134.5 3613.0 927.0 120.0
challenge-199 2779.0 2798.0 2758.0 1893.0 1.0 16.5 17.5 38.5 1529.0 650.0 516.0
challenge-200 1.0 1.0 1.0 1.0 1.0 1.5 827.0 2391.0 23.0 2.0 1.0
challenge-201 26311.0 26418.0 16069.0 1.0 4.0 1780.0 10868.0 238.0 73.0 65.0 85.0
challenge-202 18585.0 18648.0 4424.0 2.0 1.0 11516.5 3.5 288.5 49.0 72.0 122.0
challenge-203 1.0 1.0 1.0 1.0 3.0 10.0 1562.0 3015.0 722.0 591.0 582.0
challenge-204 6458.0 6470.0 6409.0 1.0 1.0 15.0 171.0 35.5 5387.0 104.0 79.0
challenge-205 2.0 2.0 3.0 2.0 1.0 26090.5 145.5 756.0 86.0 57.0 83.0
challenge-206 2362.0 2370.0 2340.0 1465.5 1.0 3.0 1.0 31.5 1141.0 274.0 362.0
challenge-207 10127.0 10276.0 10372.0 6783.0 8.0 7.0 5.0 35.0 383.0 43.0 55.0
challenge-208 33.0 33.0 35.0 129.0 45.0 2896.0 658.0 1118.5 549.0 589.0 477.0
challenge-209 19.0 21.0 263.0 2.0 3.0 17.5 44.5 241.5 137.0 2.0 2.0
challenge-210 2831.0 3037.0 33.0 10.0 9.0 1223.0 63.0 51.0 1891.0 92.0 90.0
challenge-211 1.0 1.0 1.0 1.0 1.0 124.5 32.5 671.5 237.0 96.0 130.0
challenge-212 14475.0 14789.0 15601.0 12955.5 12.0 11801.5 351.5 282.0 7904.0 14.0 16.0
challenge-213 1.0 1.0 1.0 1.0 5.0 3.0 9.0 535.0 37.0 1.0 1.0
challenge-214 6900.0 7420.0 9860.0 7.0 20.0 10294.5 689.5 395.5 890.0 230.0 126.0
challenge-215 771.0 1064.0 10.0 25.0 2.0 25.0 28.5 2630.5 3057.0 69.0 103.0
challenge-216 7.0 7.0 8.0 10.0 6.0 8.5 174.0 49.0 8.0 3.0 14.0
challenge-217 7.0 13.0 2.0 2.0 1.0 8.0 16.0 300.0 8.0 6.0 5.0
challenge-218 2.0 2.0 2.0 2.0 1.0 409.5 5.5 12.5 1190.0 1.0 2.0
challenge-219 7.0 6.0 1.0 1.0 1.0 198.0 629.0 62.0 4062.0 115.0 126.0
challenge-220 15741.0 15789.0 1.0 1.0 2.0 2.0 30.0 300.0 1.0 4.0 1.0
challenge-221 18921.0 18933.0 18485.0 5.0 9.0 3.0 174.5 331.5 757.0 9.0 6.0
challenge-222 12245.0 12248.0 819.0 1.0 1.0 659.0 20.5 249.5 1241.0 33.0 47.0
challenge-223 45.0 41.0 1.0 1.0 1.0 130.0 94.5 3167.0 11.0 9.0 10.0
challenge-224 2.0 2.0 2.0 2.0 1.0 1234.0 87.0 205.5 5774.0 164.0 103.0
challenge-225 1.5 1.5 1.5 392.5 14.5 368.5 41.0 256.5 552.0 342.0 328.0
challenge-226 508.0 633.0 929.0 1150.5 27.0 523.0 5.0 - 153.0 72.0 286.0
challenge-227 2859.0 2868.0 2909.0 44.0 263.0 71.0 8.0 38.5 1988.0 305.0 169.0
challenge-228 4364.0 4626.0 4.0 16.0 291.0 2053.5 3593.5 20.5 89.0 8.0 6.0
challenge-229 18594.0 18623.0 18411.0 1.0 11.0 5.0 12.0 479.0 252.0 299.0 253.0
challenge-230 18994.0 18493.0 16315.0 3.0 7.0 5828.5 8630.5 318.5 902.0 184.0 132.0
challenge-231 1381.0 1381.0 1374.0 1.0 19.0 810.0 197.0 12.0 254.0 15.0 15.0
challenge-232 1.0 1.0 1.0 1.0 1.0 25.0 2.0 6.0 4.0 6.0 7.0
challenge-233 4099.0 4221.0 253.0 1.0 20.0 240.0 193.0 44.0 1721.0 28.0 32.0
challenge-234 11501.0 11535.0 11510.0 268.0 3450.0 11342.5 438.5 789.0 1500.0 19.0 18.0
challenge-235 136.0 141.0 3.0 10.0 3199.0 103.5 1798.5 1978.5 133.0 222.0 270.0
challenge-236 1.0 1.0 12.0 1.0 1.0 1212.0 314.0 2003.5 3439.0 25.0 30.0
challenge-237 14.0 11.0 3.0 1.0 90.5 146.0 2.0 35.0 1.0 8.0 14.0
challenge-238 13.0 16.0 245.0 419.5 7.0 5.5 5.5 7.5 62.0 8.0 14.0
challenge-239 5.0 6.0 6.0 2449.5 1.0 6.0 5.0 27.0 36.0 3.0 5.0
challenge-240 5011.0 5478.0 759.0 1.0 1.0 96.0 57.0 71.5 37.0 32.0 37.0
challenge-241 1.0 1.0 4.0 1.0 1.0 6.0 1.0 8.5 5.0 10.0 15.0
challenge-242 1.0 2.0 1.0 1.0 1.0 2582.0 3.0 65.5 24.0 50.0 55.0
challenge-243 2.0 4.0 5.0 2.0 4.0 6.0 6.0 10.0 128.0 18.0 12.0
This summary is also available as CSV download.


Participant information and abstracts

ParticipantID:        yuanyuelogsum
Category:             category4
Authors:              Yuanyue Li, Michael Kuhn and Peer Bork
Affiliations:         European Molecular Biology Laboratory, 69117 Heidelberg, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract:

The molcules from the category4 (nonredundant) are used as the
candidates. We use a new developed machine learing approach to predict
the probability spectrum for each candidate molecule. Then the score
was calculated base on the similiarity between the probability
spectrum and real spectrum. And the log of the molecules numbers in
the model is considered as a weight. In this approach, all the
possible adduct are considered [M+H]+, [M+Na]+ and [M+NH4]+ for the
positive ions, [M-H]-, [M+Cl]- and [M+COO]- for the negative ions.
ParticipantID:        yuanyuesimple
Category:             category4
Authors:              Yuanyue Li, Michael Kuhn and Peer Bork
Affiliations:         European Molecular Biology Laboratory, 69117 Heidelberg, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract:

The molcules from the category4 (nonredundant) are used as the
candidates. We use a new developed machine learing approach to predict
the probability spectrum for each candidate molecule. Then the score
was calculated base on the similiarity between the probability
spectrum and real spectrum. In this approach, only the [M+H]+ is
considered for positive ions, the [M-H]- is considered for negative
ions.
ParticipantID:        yuanyuesqrt
Category:             category4
Authors:              Yuanyue Li, Michael Kuhn and Peer Bork
Affiliations:         European Molecular Biology Laboratory, 69117 Heidelberg, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract:

The molcules from the category4 (nonredundant) are used as the
candidates. We use a new developed machine learing approach to predict
the probability spectrum for each candidate molecule. Then the score
was calculated base on the similiarity between the probability
spectrum and real spectrum. And the square root of intensity is
considered as weight. In this approach, only the [M+H]+ is considered
for positive ions, the [M-H]- is considered for negative ions.
Participant:          Bach
ParticipantID:        IOKR_TanimotoGaussian
Category:	          4
Authors:              Eric Bach(1), Céline Brouard(1,2), Kai Dührkop(3), 
                      Sebastian Böcker(3) and Juho Rousu(1,2)
Affiliations:         (1) Department of Computer Science, Aalto University,
		          Espoo, Finland
                      (2) Helsinki Institute for Information Technology, Espoo,
		      	  Finland
                      (3) Chair for Bioinformatics, Friedrich-Schiller University,
		      	  Jena, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract
We used a recent machine learning approach, called Input Output Kernel Regression 
(IOKR), for predicting the candidate scores. IOKR has been successfully applied 
to metabolite identification [1]. 

In this method kernel functions are used to measure the similarity between MS/MS
spectra (input kernel) respectively between molecular structures (output kernel).
On the input side, we use several kernels defined on MS/MS spectra and fragmentation
trees, and combine them uniformly, i.e. we sum up the kernels with equal weights.
On the output side, we use a Gaussian kernel on Tanimoto features calculated 
from binary fingerprints representing the molecular structures in the candidate 
sets.

We train two separated IOKR models one for each ionization mode, i.e. positive
and negative. For the positive model we use ~14000 identified MS/MS spectra and 
for the negative model ~5800. Those spectra mainly are extracted from the GNPS 
and MassBank databases. We represent the candidate molecular structures using 
~7600 binary molecular fingerprints. 

For each challenge spectra we predict the molecular formula using Sirius [2] by
taking into account the possible molecule formulas based on the candidate sets.
The score we submitted for each candidate is the one corresponding to the most
likely molecular formula.

[1] Brouard, Cé.; Shen, H.; Dührkop, K.; d'Alché Buc, F.; Böcker, S. & Rousu, J.
    Fast metabolite identification with Input Output Kernel Regression
    Bioinformatics, 2016
[2] https://bio.informatik.uni-jena.de/software/sirius/
ParticipantID:        IOKRtransfer
Category:	      category4
Authors:              Céline Brouard(1,2), Eric Bach(1,2), Sebastian Böcker(3)
		      and Juho Rousu(1,2)
Affiliations:         (1) Department of Computer Science, Aalto University,
		          Espoo, Finland
                      (2) Helsinki Institute for Information Technology,
		      	  Espoo, Finland
                      (3) Chair for Bioinformatics, Friedrich-Schiller University,
		      	  Jena, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract 

During the learning phase, we trained separate models for the MS/MS
spectra in positive mode and the MS/MS spectra in negative mode. 14181
positive mode spectra and 5776 negative mode spectra from GNPS and
MassBank were used for training the models. These models were learned
using a new version of the machine learning method CSI:IOKR, called
CSI:IOKR_transfer. The specificity of this novel approach is that the
knowledge learned in the positive mode set is transferred and used to
learn the negative model (and vice versa).

In the test phase, SIRIUS was first used to compute fragmentation
trees for all the molecular formula appearing in the candidate
set. The trees with a score smaller than 80% were discarded. We then
used CSI:IOKR_transfer to predict the candidate scores for each of the
remaining trees and added a constant value to the scores to make them
positive. The scores in the IOKRtransfer submission were obtained
using the tree associated with the best score. In the second
submission IOKRtransferAvgScore, we averaged the scores obtained using
the trees associated with the five best scores.




ParticipantID:        kai_iso
Category:             category4
Authors:              Dührkop, Kai (1) and Ludwig, Marcus (1) and Böcker, Sebastian (1)
		      and Bach, Eric (2) and Brouard, Céline (2) and Rousu, Juho (2)
Affiliations:         (1) Chair of Bioinformatics, Friedrich-Schiller University, Jena
                      (2) Department of Computer Science, Aalto University
                      Developmental Biology, Halle, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract
We processed the peaklists in MGF format using an in-house version of CSI:FingerID. 
Fragmentation trees were computed with Sirius 3.1.5 
using the Q-TOF instrument settings. 

As the spectra were measured in MSe mode we expect to see isotope
peaks in MSMS. We used an experimental feature in SIRIUS that allows
for detecting isotope patterns in MSMS and incorporate them into the
fragmentation tree scoring.

We used the standard workflow of the SIRIUS+CSI:FingerID (version 3.5) software:
We computed trees for all candidate formulas in the given structure candidate list.

Only the top scoring trees were selected for further processing: Trees
with a score smaller than 75% of the score of the optimal tree were
discarded. Each of these trees was processed with CSI:FingerId as
described in [1]. We predicted for each tree a molecular fingerprint
(with platt probability estimates) and compared them against the
fingerprints of all structure candidates with the same molecular
formula. For comparison of fingerprints, we used the new new maximum
likelihood scoring function which is implemented since SIRIUS 3.5.
The resulting hits were merged together in one list and were sorted by
score. A constant value was added to all scores to make them positive
(as stated in the CASMI rules). Ties of compounds with same score were
ordered randomly. If a compound could not be processed (e.g. because
of multiple charges) its score was set to zero.

[1] Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu and Sebastian
    Böcker Searching molecular structure databases with tandem mass
    spectra using CSI:FingerID.  Proc Natl Acad Sci U S A,
    112(41):12580-12585, 2015.
ParticipantID:        kai112
Category:             category4
Authors:              Dührkop, Kai (1) and Ludwig, Marcus (1) and Böcker, Sebastian (1)
		      and Bach, Eric (2) and Brouard, Céline (2) and Rousu, Juho (2)
Affiliations:         (1) Chair of Bioinformatics, Friedrich-Schiller University, Jena
                      (2) Department of Computer Science, Aalto University
                      Developmental Biology, Halle, Germany
Automatic pipeline:   yes
Spectral libraries:   no

Abstract
We processed the peaklists in MGF format using an in-house version of CSI:FingerID. 
Fragmentation trees were computed with Sirius 3.1.5 
using the Q-TOF instrument settings. 

As the spectra were measured in MSe mode we expect to see isotope
peaks in MSMS. We used an experimental feature in SIRIUS that allows
for detecting isotope patterns in MSMS and incorporate them into the
fragmentation tree scoring.

The preliminary results have shown that we miss a lot of compounds
because we were not always able to identify the correct molecular
formula in top ranks. This might be because no isotope patterns for
the precursor were given. So we prepared a second submission kai112
which is not longer using a hard threshold, but instead consider all
molecular formulas for the CSI:FingerID search and add the SIRIUS
score on top of the CSI:FingerID score.  To avoid that empty trees
(which we would have thrown away by a hard threshold) get high scores
by random, we add a penalty of 1000 if a tree explains not a single
fragment peak. Furthermore, for the kai112 submission we trained
CSI:FingerID on a larger dataset that contains also spectra from NIST.

Beside removing the hard threshold, the kai112 submission follows the
standard SIRIUS+CSI:FingerID protocol: We computed trees for all
candidate formulas in the given structure candidate list. Each of
these trees was processed with CSI:FingerId as described in [1]. We
predicted for each tree a molecular fingerprint (with platt
probability estimates) and compared them against the fingerprints of
all structure candidates with the same molecular formula. For
comparison of fingerprints, we used the new new maximum likelihood
scoring function which is implemented since SIRIUS 3.5.  Trees with
one node get penalty of 1000. For all other trees, the SIRIUS score
was added to the CSI:FingerID score. The resulting hits were merged
together in one list and were sorted by score. A constant value was
added to all scores to make them positive (as stated in the CASMI
rules). Ties of compounds with same score were ordered randomly. If a
compound could not be processed (e.g. because of multiple charges) its
score was set to zero.

[1] Kai Dührkop, Huibin Shen, Marvin Meusel, Juho Rousu and Sebastian
    Böcker Searching molecular structure databases with tandem mass
    spectra using CSI:FingerID.  Proc Natl Acad Sci U S A,
    112(41):12580-12585, 2015.

Details per Challenge and Participant. See legend at bottom for more details

The details table is also available as HTML and as CSV download.